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Structure of Natural and
Manmade Systems

Peer-to-Peer Relationships

in networked systems
Distributed Decision & Control
Local nature of Physical Laws

Clusters of galaxies
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Distributed Adaptive Control for Multi-Agent Systems




Reynolds, Computer Graphics 1987
Flocking

Nature and Biological Systems are Resilient !

Reynolds’ Rules: :
Alignment : align headings 0 = Z a; (0, -06)

jeN;

Cohesion : steer towards average position of neighbors- towards c.g.
Separation : steer to maintain separation from neighbors







Multi-agent Networks on Communication Graphs

Robustness of Optimal Design |

Reinforcement Learning . I
Cooperatlve-Agents Games « on Commumcatlon Graphs e R T
CPS #1 ResMemt, Dlstrlbuted Control of Renewable Energy Mlcrogrlds
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Communications and Control Engineering

Frank L. Lewis
Hongwei Zhang

F.L. Lewis, H. Zhang, A. Das, K. Kristian Hengster-Movric

Hengster-Movric, Cooperative Control Abhijit Das
of Multi-Agent Systems: Optimal Design
and Adaptive Control, Springer-Verlag, Cooperatlve Control
2014 .
of Multi-Agent
Systems
. Optimal and Adaptive Design
Key Point Approaches

Lyapunov Functions and Performance Indices
Must depend on graph topology

‘:a Springer

H. Zhang, F.L. Lewis, and Z. Qu, "Lyapunov, Adaptive, and Optimal Design Techniques for Cooperative Systems on
Directed Communication Graphs," IEEE Trans. Industrial Electronics, vol. 59, no. 7, pp. 3026-3041, July 2012.

Hongwei Zhang, F.L. Lewis, and Abhijit Das
“Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback,”
IEEE Trans. Automatic Control, vol. 56, no. 8, pp. 1948-1952, August 2011.



Synchronized Motion of Biological Groups

Nature and Biological Systems are Resilient

Fish
school

Fireflies
synchronize




The Power of Synchronization Coupled Oscillators
Diurnal Rhythm




Communication Graph

Strongly connected if for all nodes i and j there is a path from i to |.
Diameter= length of longest path between two nodes

Volume = sum of in-degrees Vol = Zd

Leader or
root node
Tree- every node has in-degree=1
/ Followers
3

e,
l/ \ Spanning tree

Root node

|
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Algebraic Graph Theory
Communication Graph 1\\A

(V.E)

N nodes

2\\‘/4

0 0 O]
Adjacency matrix " 8 8 (1)
A=
A=[a;] 000
0 0O
a; >01f (v;,v;)eE I 1 1 0]
if jeN.
N \/
d = Zaij Row sum= in-degree N. In-neighbors of node i /1
j=1
N 7
d’ = Zaji Col sum= out-degree N, Out-neighbors of node i'\i

j=1
John Baras - social standing /



Graph Laplacian Matrix

Adjacency matrix

A:[aij]

In-Degree Matrix _ _




Graph Eigenvalues for Different Communication Topologies

HYW1 (db eigenvalues

Directed Tree-
Chain of
command

Imaginary
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Graph Eigenvalues for Different Communication Topologies

Directed graph-

Undirected graph-

[rmaginary

HWW1 Qb eigenvalues




Synchronization on Good Graphs

Mesh graph
4 neighbors

A\ 4
N

Chris Elliott fast video



Synchronization on Gossip Rings

Chris Elliott weird video

Ring graph
or cycle



Dynamic Graph- the Distributed Structure of Control

Each node has an associated state Xi = U,

Standard local voting protocol Ui = Z a; (X, — %)
jeN; _ -

==X > a,+ > aX, =—-dx +[a, - ay]

jeN, jeN, X
/ X
| N ]

J
' ~./

ul dl
u=| : D= A:[aij] /‘

Uy dy

u=-Dx+Ax=—(D—-A)x=-Lx L=D-A = graph Laplacian matrix

X=—LX  Closed-loop dynamics

If x is an n-vector then X=—(L®1 )X



Communication Graph

N nodes or agents

State at node iis X (t)

Synchronization problem X (t) = X;(t) =0

Formation Control

Synchronization of Rigid-body Spacecraft Dynamics
Synchronization of Trust Opinions in Multi-agent Networks
Diurnal Rhythm Synchronization in Nature



Controlled Consensus: Cooperative Tracker

Node state X% = U, control node v

Distributed Local voting protocol with control node v

U; = Z aij(xj _Xi) +bi(V_Xi)

JeN;
Local Neighborhood Tracking Error

b. =0 If control v is in the neighborhood of node i

Global state X,

XN

X=—(L+B)x+Blv B =diag{b}

Theorem. Let graph have a spanning tree and bi # (0 for at least one root node.
Then L+B is nonsingular with all e-vals positive
and -(L+B) is asymptotically stable




Example- Non Resilience in Communication Networks

Agent Dynamics and Local Feedback Design
X = AX; + Bu.

u, = —KXx

A{‘; ﬂ | Bzm K =[05 -05]

Couple 6 agents with communication graph

1
/ \
XO
c.g. leader

N

Local neighborhood tracking error

& = Zeij(xj —X%) +0;(X%—X)

jeN;

u =—-Ke

-100 -

-150 -

-200 -

-250 -

-300

Nodes synchronize to consensus heading



Example- Non Resilience in Communication Networks

Agent Dynamics and local Feedback design

X = AX; + Bu.
U, =—KXx
A:{_2 _1}, B:H K=[05 -05]
2 1 0 -

ADD another comm. Link- more information flow y

1 s [

\ 2 A . - / :
\ 4 ol o ) ]
A5} .
3 20 .
l \ B0 25 20 45 10 5 0 5 10 15 20
. 6
5

Local neighborhood tracking error

Causes Unstable Formation!
& :Zeij(xj_xi) +0; (% —X) WHY?

jeN;
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Trust Propagation and Consensus — Network Security

Inspired by social behavior in flocks, herds, teams Foundation work by John Baras

Define gﬁ,— as the trust that node i has for node j

o O i 1
95”' e[-11] Distrust no opinion complete trust
. . FA R
Define trust vector of node i as i1
S
‘- Sis |[*—— Trust node i has for node 3
Ry
B & ] £ > N vector
£= ;2 c RN2 _é:iG_ _/
o |
Standard local voting protocol G =U; = Z d;; (‘fj -&)
jeN; ——

Difference of opinion with neighbors

Closed-loop trust dynamics &=—(L®1,)¢



Trust Propagation & Consensus

\4
\ Nodes 1, 2, 4 initially distrust node 5

initial trusts are negative

| Other nodes agree that
| node 5 has negative trust

| | | | | | |
0 5 10 15 20 25 30 35 40

Convergence of trust



Trust-Based Control: Swarms/Formations

1 Trust dynamics é: Za(éz ~&)
\ Je

Motion dynamics .
‘9 Z 5.1 ij (91' _9.) heading angle

. jeNy
X; =V cosé?i
Y. =V sin 6,
K Yo
) //;%17 -1-00

-150 -

N
——

-200 -

-250 -

I I I I I I I
0 5 10 15 20 25 30 35 40 300

I —_— > . -350 —360 -2‘50 —260 -1 5")0 -1 60 —5‘0 6 50
time time——

Convergence of trust Convergence of headings  Nodes converge to consensus heading



Trust-Based Control: Swarms/Formations
Malicious Node
9i: Zé:ijaij(ej_ei)

jENiC 15

10+

N

,// L
\ 5L ] |
10} B L
3 151 e —
I I I I |
20 1 1 1 1 1 L L L 0 0.5 1.5 2 2.5
0 0.5 1 1.5 2 25 3 35 4 4.5

— 6 Divergence of trust === Divergence of headings
Node 5 injects z

negative trust values

Internal attack il
Malicious node puts out bad trust values
i.e. false information N

c.f. virus propagation

25 L L L L L L L L L
30 25 20 15 10 -5 0 5 10 15 20

Causes Unstable Formation



Trust-Based Control: Swarms/Formations
CUT OUT Malicious Node

éi = Z é:ijaij (Qj _Qi) heading angle

jeNy

Work by Sajal Das

1 | Other nodes agree that
node 5 has negative trust

o 5 10 15 20 2 30
: 6 Convergence of trust

Node 5 injects

I
35

negative trust values

Cut out node 5 3

; Node 5
If node 3 distrusts node 5, 4%

I I I I I I I
0 5 10 15 20 25 30 35

Convergence of headings

40

40

50

0 L
50k
-100}
A50F
200}
250}
-300}

-350

400 I I I I I I I I I
-400 -350 -300 -250 -200 -150 -100 -50 0 50 100

Restabilizes Formation



Multi-agent Networks on Communication Graphs

Robustness of Optimal Design |

Reinforcement Learning . I
Cooperatlve-Agents Games « on Commumcatlon Graphs e R T
CPS #1 ResMemt, Dlstrlbuted Control of Renewable Energy Mlcrogrlds
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Why are Biological Systems Resilient?
Optimality in Biological Systems

Cell Homeostasis

B ‘

Cellular Metabolism

The individual cell is a complex
feedback control system. It pumps
ions across the cell membrane to
maintain homeostatis, and has only
limited energy to do so.

transporied malecule

@0
.G.

o channel @  carrier e ®
protein "0_..
lipid |:£.LL_L—_' | ] 4 cx ' . concentration
bilayer | [ ] | ' N : i gradiont
uilfy : g l
&
\I"{ffﬁl ‘@
simple channael- carriar- . .
diffusion Irnadiuled mediated (]
i i

PASSIVE TRANSPORT ACTIVE TRANSPORT

Permeability control of the cell membrane

http://www.accessexcellence.org/RC/VL/GG/index.html



Why are Biological Systems Resilient?
Optimality in Biological Systems

Every living organism improves its control actions based on
rewards received from the environment

The resources available to living organisms are usually meager.
Nature uses optimal control.

Optimality Provides an Organizational Principle for Behavior

Charles Darwin showed that Optimal Control over long timescales
Is responsible for Natural Selection of Species

Reinforcement Learning

1. Apply a control. Evaluate the benefit of that control.
2. Improve the control policy.

RL finds optimal policies by evaluating the effects of suboptimal policies



Different methods of learning

Reinforcement learning

We want OPTIMAL performance

lvan Pavlov 1890s

Sutton & Barto book

ADP- Approximate Dynamic Programming

Actor-Critic Learning

Desired
performance
Reinforcement
signal
« Critic
Tune
actor
Control
Adaptive ‘InpUtS System
Learnjng system
outputs

/ Actor




THIRD EDITION

Books

F.L. Lewis, D. Vrabie, and V. Syrmos,
Optimal Control, third edition, John Wiley and
Sons, New York, 2012.

New Chapters on:
Reinforcement Learning
Differential Games

OPTIMAL
CONTROL

Frank L. Lewis
Draguna Vrabie
maoedaterd Vassilis L. Syrmos

D. Vrabie, K. Vamvoudakis, and F.L. Lewis,
Optimal Adaptive Control and Differential
Games by Reinforcement Learning
Principles, IET Press,

2012. e
Draguna Vrabie, Kyriakos G.
Vamvoudakis and Frank L Lewis




Reinforcement
Learning and Adaptive
Dynamic:Programming

for Feedback Controf

Frank L. Lewis
and Draguna Vrable

C 1

= Living organisms learn by

acting on their environ-
ment, observing the re-
sulting reward stimulus,
and adjusting their actions
accordingly to improve
the reward. This action-
based or Reinforcement
Learning can capture no-
tions of optimal behavior
ooourring in natural sys-
tems. We describe math-
ematical formulations for
Reinforcement Learning
anda practical iImplemen-
tation method known as
Adaptive Dymamic Pro-

3] gramming. These give us

insight into the design of
controllers for man-made
engineered systems that
both lzarn and exhibit op-
timal behavior.

F.L. Lewis and D. Vrabie,
“‘Reinforcement  learning and
adaptive dynamic programming
for feedback control,”

IEEE  Circuits &  Systems
Magazine, Invited Feature Article,
pp. 32-50, Third Quarter 2009.

IEEE Control Systems Magazine,
F. Lewis, D. Vrabie, and K.
Vamvoudakis,
“Reinforcement  learning
feedback Control,” Dec. 2012

and



Optimal Control- The Linear Quadratic Regulator (LQR)

User prescribed optimization criterion V(x(t)) = I(XT Qx+u'Ru) dz
t

(Q,R)
0=PA+A'"P+Q-PBR'B'P
K=R'B'P
Control u . System
— K X = AX + Bu
- v

OPTIMAL CONTROL IS

RESILIENT
ROBUST

HAS GUARANTEED STABILITY MARGINS

An Offline Design Procedure

that requires Knowledge of system dynamics model (A,B)

FORMAL DESIGN
PROCEDURE
Off-line Design Loop
Using ARE

On-line real-time
Control Loop

System modeling is expensive, time consuming, and inaccurate



A_lrcraft Autopllc_)ts - S i
Linear Quadratic Regulator FRANK L.LEWIS

_ _ _ ERIC N. JOHNSON
Linear Quadratic Gaussian LTR

BRIAN L. STEVENS and FRANK L. LEWIS

- =

— T

\IRCRAFT CONTROL
AND SIMULATION

THIRD EDITION

AIRCRAFT

CONTROL
SIMULATION

- s m.}'l'.
o . : second
b ; N b edition

DYNAMICS, CONTROLS DESIGN,
AND AUTONOMOUS SYSTEMS




Applications at Boeing Defense Space & Security
Kevin Wise and Eugene Lavretsky

Highly reliable adaptive uncertainty approximation compensators for
flight control applications:

unmanned aircraft — Phantom Ray

Tailkit adaptive control systems for

Joint Direct Attack Munition (JDAM) munitions:
Mk-82, Mk-84, and Laser-guided variants
Fielded for defense in Iraq and Afghanistan.



We want to find optimal control solutions
Online in real-time
Using adaptive control techniques
Without knowing the full dynamics

For nonlinear systems and general performance indices

Adaptive Control Structures for Resilience:

A. Optimal control B. Zero-sum games  C. Non zero-sum games

1. System dynamics
2. Value/cost function

3. Bellman equation
4. HJ solution equation (Riccati eq.)

5. Policy iteration — gives the structure we need



Adaptive Control is online and works for unknown systems.
Generally not Optimal

Optimal Control is off-line,
and needs to know the system dynamics to solve design eqgs.

We want ONLINE DIRECT ADAPTIVE OPTIMAL Control
For any performance cost of our own choosing

Reinforcement Learning turns out to be the key to this!

RL brings together Optimal Control and Adaptive Control



Derivation of Nonlinear Optimal Regulator

Nonlinear System dynamics X = f(x,u) = f (X)+ g(x)u

0

Cost/value V (x(t)) = '[r(x, u) dt = T(Q(X) +u'Ru) dt
t t Leibniz gives

: . . . . Differential equivalent
Bellman Equation, in terms of the Hamiltonian function q

H(x,z—\;,u)=\7+r(x,u):(%—\;j %+ r(x,u):(g—\;j (f(x)+g(U)+r(xu)=0

oH _

Stationarity condition T
u

0

_ oV
Stationary Control Policy U=h(x)=-%R™g’ (x)&

Hamilton-Jacobi-Bellmen Equation

T T .
dv dv dv
0=| & | f1Qu-2| L | grtgm &
[dx} Q()“[deg ¥ T

Off-line solution
HJB hard to solve. May not have smooth solution.
Dynamics must be known



Integral Reinforcement Learning
To find online methods for optimal control lterate on these two equations
Nonlinear System dynamics X = f(x,u) = f (X)+ g(x)u

0

Cost/value V (x(t)) = '[r(x, u) dt = T(Q(X) +u'Ru) dt

t

V (x(t)) =Tr(x,u) dr :T r(x,u)dz+ T r(x,u)dr

Bellman Equation, in terms of the Hamiltonian function

V(x(t))=t]Tr(x,u)dr + V(X(@+T)), V(0)=0

t

Good Bellman Equation

oH

Stationarity condition el
ou

0

_ oV
Stationary Control Policy | U=h(X)=-%R™g’ (x)&




Integral Reinforcement Learning (IRL)- Draguna Vrabie
IRL Policy iteration

Policy evaluation- IRL Bellman equ+aTtion CT Bellman eq.

Costupdate V, (X(1)) = j rou)dt + Vo (X(t+T))

t

f(x) and g(x) do not appear

T
Equivalent to 0= (G—Vj f(x,u)+r(x,u)=H (x,ﬁ—v,u)
OX OX

Solves Bellman eq. (nonlinear Lyapunov eq.) without knowing system dynamics

Policy improvement

_ oV,
Control gain update U, =h . (X)=—%R™g’ (X)a—xk g(x) needed for control update

Initial stabilizing control is needed

T T .
Converges to solution to HJB eq. 0= dv f+O(x) -2 dv R1 TdL
( dx Q) —3 dx o~y dx

D. Vrabie proved convergence to the optimal value and control
Automatica 2009, Neural Networks 2009



Real-time Implementation
Approximate Dynamic Programming

Value Function Approximation (VFA) to Solve Bellman Equation
t+T

Vo (x@®) = [ (Q(¥)+u,Ruy )dt+V, (x(t+T))

t
Approximate value by Weierstrass Approximator Network \/ :WT¢(X)
t+T

W, g(x(1) = | (QU)+u,"Ru, ) dt + W g(x(t+T))

t
t+T

W, [(x(®) - p(xt+T)]= [ (Q()+u Ru,)dt  >caarequation

with vector unknowns

— _
~

Reinforcement on time interval [t, t+T]

regression vector

Same form as standard System ID problems

Now use RLS along the trajectory to get new weights W,
Then find updated FB

Uy =N () =—-%R7g" (X)%k =-%R7g’ (X){

apx®) |
ox(t) “

Direct Optimal Adaptive Control for Partially Unknown CT Systems



Integral Reinforcement Learning (IRL)

Solve Bellman Equattign - Solves Lyapunov eq. without knowing dynamics
+

W' [px(®)-g(xt+T)]= [ x()" Q+K' RK)X(7)dr=p(t.t+T) [ Data set at time [1,t+T)
t (x(1), p(t,L+T), X(t+T))

observe x(t) observe x(t+T) observe x(t+2T)

apply uk=L,x apply uk=L,x apply uk=L,x

> > : >
observe cost integral | observe cost integral | observe cost integral

ot t+T) p(t+T,t+2T) | p(t+2T,t+3T)

update P update P update P

v v vy v
I [ | !

1 I
t t+T t+2T t+3T
Do RLS until convergence to P,
Or use batch least-squares ‘
E
This is a data-based approach that uses update control gain

measurements of x(t), u(t) K —RIBTP
Instead of the plant dynamical model. k+1 — k

A is not needed anywhere ‘




Draguna Vrabie

Direct Optimal Adaptive Controller

Solves Riccati Equation Online without knowing A matrix
OPTIMAL CONTROL IS

RESILIENT Run RLS or use batch L.S.
ROBUST To identify value of current control
HAS GUARANTEED STABILITY MARGINS N\
Critic
| |
ZOH T
T ><> T ><> Dynamic
V > Control
Update FB gain after System
Critic has converged Jo=x"Qx+UTRU & w/ MEMORY

Actor u_ System X <
| X = AX+ Bu
¥

A hybrid continuous/discrete dynamic controller
whose internal state is the observed cost over the interval

Reinforcement interval T can be selected on line on the fly — can change



Optimal Adaptive IRL for CT systems

Actor / Critic structure for CT Systems

t+T

D. Vrabie, 2009

Reinforcement learning V, (X(t)) = J‘ r(x,u)dt + V, (x(t+T))

_ oV,
U, =N (X)==%R ‘g’ (X)a—xk /

t

Theta waves 4-8 Hz

Critic

* (cost approximation/

policy evaluation)

Desired behavior/ . Actor/ Control
Reference trajectory (control pqh'cy) signal
v

» System

Output/State

Motor control 200 Hz

A new structure of adaptive controllers



Oscillation is a fundamental property of neural tissue

Brain has multiple adaptive clocks with different timescales

gamma rhythms 30-100 Hz, hippocampus and neocortex
high cognitive activity.
* consolidation of memory
« spatial mapping of the environment — place cells

The high frequency processing is due to the large amounts of sensorial data
to be processed

theta rhythm, Hippocampus, Thalamus, 4-10 Hz
sensory processing, memory and voluntary control of movement.

Spinal cord

v

Motor control 200 Hz
D. Vrabie, F.L. Lewis, D. Levine, “Neural Network-Based Adaptive Optimal Controller- A Continuous-Time
Formulation -,” Proc. Int. Conf. Intelligent Control, Shanghai, Sept. 2008.

D. Vrabie and F.L. Lewis, “Neural network approach to continuous-time direct adaptive optimal control for
partially-unknown nonlinear systems,” Neural Networks, vol. 22, no. 3, pp. 237-246, Apr. 2009.



FUHBUPEWISEEI Learning

theta rhythms 4-10 Hz

Output >
A

-,

Deliberative
evaluation

!

"Reinforcement Learning

li Reward
Out@ ut >
-y

~,

Limbic system

f

FSUPEWIEEH Learning Target

+

{ Error
Motor control 200 Hz inout
control JI> ouput_ |

Figure 1. Leamning-oriented specialization of the cerebellum, the basal ganglia, and the cerebral
cortex (1], [2]. The cerebellum is specialized for supervised learning based on the ervor signal
encoded n the climbing fibers from the inferior olive. The basal ganglia are specialized for
reinforcement learning based on the reward signal encoded in the dopaminergic fibers from the
substantia nigra. The cevebral cortex is specialized for unsupervised learning based on the statistical

properties of the input signal.

Sove K Cawato 2001 OPTIMALITY AND RESILIENCE
oya, Rimura, Rawato OF BIOLOGICAL SYSTEMS



Simulation 1- F-16 aircraft pitch rate controller

X=| 0.82225 -1.07741 -0.17555 0

-1.01887 0.90506 —-0.00215 0
X+ u
0 0 -1 1

ARE 0=PA+A"P+Q-PBR'B'P

Select quadratic NN basis set for VFA

Stevens and Lewis 2003

x=[a q J]

Exact solution Wl*:[p11 2P, 2P13 Poo 2P93 p33]T
=[1.4245 1.1682 -0.1352 1.4349 -0.1501 0.4329]T



Simulations on: F-16 autopilot

A matrix not needed

System states

3.51 \*\
3t
\
2.5r Y
2 ;\k

X‘\s
0.5} ****** |
0 ‘ M“WWM
0 0.5 1 15 2
Time (s)
Critic parameters
| | e 00 .*
02 [ o® o ©°° 4
« P12
° * P(1,2
015 [ ° . P(2,2)
* P(1,1) - optimal
* P(1,2) - optimal
0.1 * P(2,2) - optimal | |
005* . ® oo oo ee o oo o TR YT AR Y Y .
0_ oo, oo o0 o0 o e e (XXX o ol
0 1 2 3 4 5 6

Time (s)

Control signal

il W
-0.1r ~ ]
0 // //f
_0.3, I I I ,

0 0.5 1 1.5 2

Time (s)

Controller parameters
OfF—= ¥ ‘ B
4
e

-0.2r A .
0.4 ! ! o ! %
0 0.5 1 15 2

Time (s)

Converge to SS Riccati equation soln

Solves ARE online without knowing A

0=PA+A"P+Q-PBR'B"P



A. Al-Tamimi, D. Vrabie, Youyi Wang

Simulation 2: Load Frequency Control of Electric Power system

X = Ax+Bu Frequency
Generator output
X(t)=[Af(t) AR,(t) AX () AE@®T Governor position
Integral control
[ -1/T, K, /T, 0 0 ] [0 ]
0 ~1T, 1T, 0 0
A= . B=
-1/RT, 0 1T, -1/T, 1/T,
K 0 0 0 0
ARE

0=PA+A'P+Q-PBR'B'P
ARE solution using full dynamics model (A,B)

[0.4750 0.4766 0.0601 0.4751
0.4766 0.7831 0.1237 0.3829
0.0601 0.1237 0.0513 0.0298 |
| 0.4751 0.3829 0.0298 2.3370 |

ARE —




0=PA+A'"P+Q-PBR'B'P

04750 04766 00601 04751 Solves ARE online without knowing A
o 0.4766 0.7831 0.1237 0.3829
" 0.0601 01237 0.0513 0.0298 704802 04768 0.0603 0.47547
04751 0.3829 0.0298 2.3370 ] 0.4768 07887 0.1239 0.3834
P .. = .
emeNN 10,0603 0.1239 0.0567 0.0300
: 4754 0.3843 0.0300 2.3433
IRL period of T= 0.1s. L0475 |
Fifteen data points  (x(t),x(t+T), p(t:t+T))
Hence, the value estimate was updated every 1.5s.
System states P matrix parameters P(1,1),P(1,3),P(2,4),P(4,4)
0.1 T 25 . i i i ‘
0.08 ""’“._ e s o R 0 0= @ men o
0.06} 2r - P(1,1)
R ——P(13)
004} ;, Ll A P(2.4)
0.02 - / === P(4,4)
0 7\\‘\‘ 1 4
. S X4
S ‘
% 05l % e eeeeeernennseeeenenns
-0.04} ' Al. ......... :::;:Z.-- B R 1
-0.06" Oeeeess 2ol *
-0.08
N | | -0.5 ! ! ! ! !
01, y 5 3 4 5 0 10 20 30 40 50 60
Time (s) Time (s)



The Power of Optimal Design

Once you can do optimal design that minimizes a performance index. many sorts of designs are

immediately possible.

Minimum energy

J= éJ..TTQ.‘l.’+MTRH dt
<0

Minimum fuel

J =éj‘xrgx+p|u| dr
i

Minimum time

T
—[1df=
J_J;IIT

Constrained control inputs

J=éT{Q(1—)+f‘a‘l(v)dv ]dr

Approximate minimum time with smooth control inputs

J |

J=

I[talﬂl(IIQx) + pii o' (v)dv ] dt
0 0 .

)

tanh(p)




Adaptive Control

OPTIMALITY YIELDS |dentify the V(x) =W T 2(X)
RESILIENCE W
ROBUSTNESS Optimal Adaptive
PERFORMANCE
GUARANTEES

|dentify the
-
Indirect Adaptive

| ' e
Controller-
Direct Adaptive

A\ 4

v

Plant

control output
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Games on Communication Graphs

SUN
TZU
ART of
WAR

Sun Tz bin fa



Speed up Multi-agent Decision-making by Imposing Sparse Efficient
Communication Structures

Fast Decision Using
New Concept of Graphical Games to limit each agent’s decision horizon

Bounded Rationality -
Faster decisions based on local information
Under certain conditions, the local decisions are globally optimal
Nash Equilibrium on Graphs is defined

Automatica 50 (2014) 3038-3053

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Multi-agent discrete-time graphical games and reinforcement
learning solutions”®

Mohammed I. Abouheaf®!, Frank L. Lewis?, Kyriakos G. Vamvoudakis©, Sofie Haesaert9,
Robert Babuska®



Manufacturing as the Interactions of Multiple Agents

Each machine has it own dynamics and cost function
Neighboring machines influence each other most strongly
There are local optimization requirements as well as global necessities

Gypsum production line

Each process has its own dynamics o = AS; + (d; + g;)Biu; - Zeu iYj
JeN;

And cost function 3.(5,(0),u;,u_;) = .[(5TQ“5 +ul R+ Y uTRyu;) dt
jeN;

Each process helps other processes achieve optimality and efficiency



Communications and Control Engineering

Frank L. Lewis
Hongwei Zhang

F.L. Lewis, H. Zhang, A. Das, K. Kristian Hengster-Movric

Hengster-Movric, Cooperative Control Abhijit Das
of Multi-Agent Systems: Optimal Design
and Adaptive Control, Springer-Verlag, Cooperatlve Control
2014 .
of Multi-Agent
Systems
. Optimal and Adaptive Design
Key Point Approaches

Lyapunov Functions and Performance Indices
Must depend on graph topology

‘:a Springer

H. Zhang, F.L. Lewis, and Z. Qu, "Lyapunov, Adaptive, and Optimal Design Techniques for Cooperative Systems on
Directed Communication Graphs," IEEE Trans. Industrial Electronics, vol. 59, no. 7, pp. 3026-3041, July 2012.

Hongwei Zhang, F.L. Lewis, and Abhijit Das
“Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback,”
IEEE Trans. Automatic Control, vol. 56, no. 8, pp. 1948-1952, August 2011.



Graphical Games
Synchronization- Cooperative Tracker Problem Xo(t)

Node dynamics X =Ax +Bu;, X (t) eR", u;(t) e R™
Target generator dynamics Xo = AXg

Synchronization problem X () = X, (1), Vi
Local neighborhood tracking error (Lihua Xie)
0 = Z &; (Xi —X;)  +9;(Xi —Xo),
jeN;
Local nbhd. tracking error dynamics
8 = AS, + (d; +g,)Bu. Z e;B;u; Local agent dynamics driven by neighbors’ controls
jeN;
Impose Optimality to get Resilience and Robustness

Define Local nbhd. performance index

3.(5,(0),u,u) =1 j(csTQ,,é FUT R+ D uTRyu)) E%jL(a(t)u(t)u (1)) dt

jeN;
Values drlven by neighbors’ controls

K.G. Vamvoudakis, F.L. Lewis, and G.R. Hudas, “Multi-Agent Differential Graphical Games: online adaptive
learning solution for synchronization with optimality,” Automatica, vol. 48, no. 8, pp. 1598-1611, Aug. 2012.



New Differential Graphical Game

U,

Local Dynamics
Local Value Function
Only depends on

graph neighbors

U;  Control action of player i

State dynamics of agent i
5 = AS, + (d; +g;)Bu; — Zeu iU

Value function of player i Jetl

OPTIMAL CONTROL IS 3.(8,(0),u u_;) = j (&7 Qud; +ul Ryt + > ul Ryu;) dit
RESILIENT 0 i
ROBUST

HAS GUARANTEED STABILITY MARGINS



Standard Multi-Agent Differential Game

U,

N

Central Dynamics
® * Local Value Function
depends on ALL

/ other control actions

Central Dynamics

N
‘ 1=Az+) By
i=1

U. Control action of player i

Value function of player i

oo N
J:(z(0),u;,u_;) Z%I(ZTQZ+ZU} Riju;) dt
0 j=t



Team Interest vs. Self Interest

Cooperation vs. Collaboration

The objective functions of each player can be written as
a team average term plus a conflict of interest term:

Ji :%(J1+Jz +J3)+%(31—32)+%(31—J3) = Jieam +31C0i
‘J2 :%(J1+J2 +‘]3)+%(JZ _‘]1)"'%('-]2 _‘]3) = ‘Jteam +‘J§Oi

J3 :%(J1+‘]2+J3)+%(J3_Jl)+%(‘]3_‘JZ)E‘Jteam +J§Oi
For N-players
J—iNJ AN J-J)=J J =1 N
i_sz+NZ(i j)— eam TYi » 1=4
j=1 j=1

For N-player zero-sum games, the first term is zero,
I.e. the players have no goals in common.



New Definition of Nash Equilibrium for Graphical Games

To restore the Symmetry of Nash equilibrium

Def: Interactive Nash equilibrium

1. 3 23U ug) < Ji (Ui Ug), VieN i.e. they are in Nash equilibrium

2. There exists a policy u; such that
Ji (UJ,UE_J)?ﬁ\]l (U’I,U(’;_J), V|,J€N

That is, every player can find a policy that changes the value of every other player.

Theorem 3. Let (A,B,) be reachable for all i.
Let agent i be in local best response

J; (Ui, ) < J; (U, u), Vi



Graphical Game Solution Using Integral Reinforcement Learning

Value function
Vi3 (1) = j(a‘TQ..aw Ry .+Zu Ryu;) dt

Differential equwalent (Lelbnlz formula) is Bellman’s Equation

oV. v, T

Hi (6, =5 U, u) === [ AS +(di +07)Biuy — Y e;Bju; [+367 Qs +2ul Ry +3 D ujRyu; =0
aé" 85' jeN; jeN;
Stationarity Condition
OoH; oV,
0=—" = u=—(d;+g)R;'B’ — < : .
ou. i+ ) 6, To find online methods for GG
1. Coupled HJ equations lterate on these two equations
v - D\
85 A +257 Qs +3(d; +9; )2 BR; lBT—+2 PNCIERT ) J B;R;'RyR;'B;’ = —L=0,ieN

i ' jeN; J

Vi »
Hi(5i'6—é.liui Uu_)=0

| 1 OV oV,
where  A°=AS —(d; +0;)°BR: 1B —-+ z & (d; +0;)B;R'B;’ —L.,ieN
Iy 09;

2. Best Response HJ Equations — other players have fixed policies U;

0= Hy (6, b v ,.)=— A+ 15TQ..5+1(d+9)26V BRI TL+3 Y ulRy,
i | | ]EN

oV,
where AS = AS, — (d; +g;)? BR,,lBT - &;Bju;
' jeN;



Online Solution of Graphical Games

Use Reinforcement Learning

POLICY ITERATION

Algorithm 1. Policy Iteration (PI) Solution for N-plaver
distributed games.
Step 0: Start with admussible initial policies u? VWi

Step I: (Policy Evaluation) Solve for I'f!-‘rr using (14)
k
(o]
H;-(ﬁ,-,ﬂ—ﬁ' ,u,-k,u_f} =0.¥i=1_....N (38)
5,
Step 2: (Policy Improvement) Update the N-tuple of control
policies using
k
. (] 8
u!'-H-l = argmun 5, (5,.—- ,ui-,ﬂ_,-k}_‘-?'z'=l _____ N
i, aﬁi-

which explicitly 1s
rov;f

" =—d;+g)Ry B — L Vi=l..N.  (39)
od;
Go to step 1.
On convergence End |

Kyriakos Vamvoudakis

MULTI-AGENT LEARNING

Convergence Results

Theorem 3. Convergence of Policy Iferation algorithm
when only i agent updates its policy and all players u_;in
the neighborhood do not change. Given fixed neighbors
policies w_;. assume there exists an admissible policy wu;.

Assume that agent 7 performs Algonithm 1 and the its
neighbors do not update their control policies. Then the

algorithm converges to the best response u; to policies n_; of
the neighbors and to the solution V; to the best response HJ
equation (36).

The next result concerns the case where all nodes update
their policies at each step of the algonithm. Define the relative

control weighting as p; = E(R;R&-}, where E(R;R{-j} 1s the

maximum singular value of R;-II R;.

Theorem 4. Convergence of Policy Iteration algorithm
when all agents update their policies. Assume all nodes 7
update their policies at each iteration of PI. Then for small

enough edge weights ¢; and o;. g, converges to the global

Nash equilibrium and for all 7, and the values converge to the
optimal game values If’,-k — I*’,-*.
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What is a micro-grid?

Micro-grid is a small-scale power system that provides the power for
a group of consumers.

Micro-grid enables

local power support for i ' T e e
local and critical loads. jscale En o
Micro-grid has the
ability to work in both
grid-connected and
islanded modes.
Micro-grid facilitates

the integration of i a2
Distributed Energy GroundPV Solar Array %x ﬁ
Dlstnbuted Generation

Resources (DER) i Home Energy System

. Switches &
o

Photo from: http://www.horizonenergygroup.com



An introduction to micro-grids:
Micro-grid applications

* The main building block of smart-grids

* Rural plants

Communications .

« Business buildings, hospitals,
and factories

ds

%
i O
. Smart
Distributed J
o] L
& Storage

Smart-grid photo from: http://www.sustainable-sphere.com



Distributed Generators (DG)
Distributed Energy Resources (DER)

* Non-renewables
» Internal combustion engine
» Micro-turbines
» Fuel cells

 Renewables
» Photovoltaic
» Wind
» Hydroelectric
» Biomass




Micro-grid Advantages

Micro-grid provides high quality and reliable power to the critical
consumers

During main grid disturbances, micro-grid can quickly disconnect
form the main grid and provide reliable power for its local loads

DGs can be simply installed close to the loads which significantly
reduces the power transmission line losses

By using renewable energy resources, a micro-grid reduces CO2
emissions



Bidram, A., & Davoudi, A. (2012). Hierarchical structure of microgrids control system.
IEEE Transactions on Smart Grid, vol. 3, pp. 1963-1976, Dec 2012.

Micro-grid Hierarchical Control Structure

Optimal operation in both operating

Tertiary Control

Power flow control in grid-tied mode

v
— —— Secondary Control
Voltage deviation mitigation
. . Do coop. ctrl. here to
Frequency deviation alleviation :
Synchronize frequency
; ! and voltage
Voltage stability provision
Frequency stability
— Primary Control
Plug and play capability for DGs
Maintains Stability
’
[ Microgrid ]

; Tie
[ Main grid ]




Cooperative Game-theoretic Control of Active
Loads in DC Microgrids

Ling-ling Fan, Vahidreza Nasirian, Hamidreza Modares,

Active Load (Agent) Frank L. Lewis, Yong-duan Song, and Ali Davoudi,

Final Load Power Buffer
e Pout
4— Cci,r?\\/’;?trer — E
pOUt
1
tt, T Power buffers in Microgrid Network

Bus 2 Bus 3
Bus 7 Bus 6 Bus 9

Power buffer operation during a step
change in power demand.

f) Power Buffer

E i Power -
: — e —) — Resistive
- > i Converter Load

-4¢---- Final Load --- 9

(b) Ui ? Control Input



Active Load Power Buffer

2
e'_v_i_
<i_r pl

i '
r=u
| |

Stored energy €,

Input impedance f

Bus voltage V,

Control input Ui

Output power = a disturbance P,

(@)
AL
= DC System

Active Sources + Distribution Network Active
Load 1 Load N

Communication
Module

Active

Active
Load 2 \_// Load i



Solve for bus voltage to get coupled agent dynamics

- [ ) ) 2 -_ - -
e| |0 2y, —(i') -1fe] [o] o
r.|=|0 0 01jr, |+|1ju, +|0jw, +
P, 0 0 01|p 0 1
—~— = oo -
X N X; B D,
A
[ M+N
Z fyljj
j=M +1(=i)
+2¢ 0 | i=M+L-M+N,
0

Define coupled performance indices
=&
Define Communication Graph
Sparse efficient topology

Optimal design provides Resilience
and disturbance rejection

<

dt, =M +1--
(@)
i

UXJ—|—,0U M + N,

jeN;

~n
&

Communication
Module

Vahid Nasirian
Reza Modares

Dr. Ali Davoudi

DC System
Sources + Distribution Network




Micro-grid secondary control: Work of Ali Bidram

. _ With Dr. A. Davoudi
Distributed CPS structure

Cyber Physical System (CPS)
Cyber layer

A sparse, efficient communication network to allow
cooperative control for synchronization of
voltage and frequency

DG 8.: :,,’ link

DGl I !
g

[ <#=>pG2 DG 3 <]
Y P

Cyber Resilience Because of-

communication - . .

framework Sparse, Efficient communication network
Optimal Design- Graph Games

Distributed computation — no SPOF

Physical Layer

The interconnect structure of the power grid

104



Case Study
A 48 VV DC distribution network with three active loads and three sources

Bus 2 Bus 3

Physical Microgrid Layer

}B Boost converter
. {Power Buffer) LC Filter Buck convertar g
i + + =i - < E
: - — §
L% r
N
I {ts0) Final Load
Proposed
(b) Controller -
Communication

Cyber Communication Layer
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Optimal Leader-Follower Trackers
CPS #2 — Resilient Human-robot Interaction Systems




On-policy RL

Target policy: The policy that we are learning about.

Behavior policy: The policy that generates actions and behavior

Ref.

Z

Target and behavior

> .
)? policy

> System

/

Target policy and behavior policy are the same

109



Off-policy RL

Humans can learn optimal policies while actually applying suboptimal policies

£

‘>
———|  Target policy >
—
/
Ref. 5|  Behavior Policy > System >

Target policy and behavior policy are different

110



Off-policy IRL Yu Jiang & Zhong-Ping Jiang, Automatica 2012
Humans can learn optimal policies while actually applying suboptimal policies
system x=f(x)+g(x)u

value IO =] r(x@).u()dz

On-policy IRL
[i] 0l et TN — [ Y 0T Ryl
V@) -IN(x(t-T) =—| _Q(ydz—[ u"Ru"dr
ult = —%R‘lgTJ)[(i] Must know g(x)
Off-policy IRL

x=f+gu+g(u-u)

IIx®) -3V (x(t-T)=-] _Q(dz~| uRuldr+2[ u" R -u)dz
DDO : : -

This is a linear equation for JM and
They can be found simultaneously online using measured data using Kronecker product and VFA

g+

1. Completely unknown system dynamics

2. Can use applied u(t) for —
disturbance rejection — Z.P. Jiang - R. Song and Lewis, 2015
robust control — Y. Jiang & Z.P. Jiang, IEEE TCS 2012
exploring probing noise — without bias ! - J.Y. Lee, J.B. Park, Y.H. Choi 2012



LQ Tracker Problem for Continuous-time Systems
System Dynamics X = AX + BU
y = CX

Assume the reference trajectory is generated by Yy, = FYy,

T

Augmented system state: X (t) = [x(t)T y, @)

Augmented system: X =

Value function:

V(X®) = %j‘e“m

t

X'Q, X +u'Ruld7 = %X(t)TP X (t)

Q. =C,'QC, C,=[C —1I]

LQT Bellman equation:

0=TX+B,uyPX +X"PTX + Blu)+ X'Q, X +uRu



Online solution to the CT LQT ARE: Off-policy IRL

Humans can learn optimal policies while actually applying suboptimal policies

X =TX+Bu=T,X+B (K'X+u), T =T —BK'

e XA +T) P Xt +T)— X P X(t) = —fm di(e—WT—t)xTPi X Y7
t T

t+T . . t+T . .
_ _ft e "TIXTQ,+ KTRK)Xdr +2ft e V(U +K'X) BT P Xdr

%f__/
RKI+1

Off-policy IRL Bellman equation

Algorithm. Online Off-policy IRL algorithm for LQT
Online step: Apply a fixed control input and collect some data

Offline step: Policy evaluation and improvement using LS on collected data

. . t+T
e XA +TY PIX({E+T) - XO)P' X() = [ T e IXTQ X d7 +
t

ST ) i \T B 1 i+ e i
Zf e (u+K'X) RK"™ Xdr No knowledge of the dynamics is required
t
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Optimal Leader-Follower Trackers
CPS #2 — Resilient Human-robot Interaction Systems







RL for Human-Robot Interactions

H. Modares, |I. Ranatunga, F.L. Lewis, and D.O. Popa, “Optimized Assistive Human-robot Interaction using
Reinforcement Learning,” IEEE Transactions on Cybernetics, to appear 2015.
2-Loop HRI Learning Controller Based on Human Factors Performance Studies
Humans learn 2 components in HRI-
1. must learn to compensate for nonlinear robot dynamics
2. must learn to perform the task
Our result - The Robot adapts in order to minimize human effort

> Performance

Prescribed X
Impedance Model

V _\

Feedforward ]

| |
| |
! :
1 1
Control ! N I Yo
: : log
P f ( : :
g | > Torque T Robot X

| Fuman <, ' —| Design | Manipulator i
- | :
. !.

\ /

- - - Y
Robot-specific inner control loop
\ }
|

Task-specific outer-loop control design
Using IRL Optimal Tracking Implemented on PR2 robot



Human-Robot Interaction Using Reinforcement Learning

IEEE TRANSACTIONS ON CYBERNETICS

Optimized Assistive Human—Robot Interaction
Using Reinforcement Learning

Hamidreza Modares, Isura Ranatunga, Student Member, IEEE, Frank L. Lewis, Fellow, IEEE,
and Dan O. Popa, Member, IEEE

2-Loop HRI Learning Controller Based on Human Factors Performance Studies
The Robot adapts in order to minimize human effort

Task control outer loop Robot control inner loop
using Online Reinforcement Learning using Neural Adaptive Learning

e .
7 I
4 Prescnibed |
/[ ] Impedance Model |
|
, .
y
1O
-'l._ I
Torque T Robot @ :
Design Manipulator :
< I
\ 1
______ X e A







Modeling and Control of Adversarial Networked T Ims

Zero-Sum Games " L S
Bipartite Synchronization on Antagonistic Com.wni ation
Multi-agent Pursuit-Evasion Games .

i




H-Infinity Control Using Neural Networks

Disturbance Rejection

System Performance output disturbance
2 g Two
< x=ft(X)+g(xu+k(x)d | Antagonistic Inputs
X y =h(x) u control
2=[y" ']
u=I(x)

L, Gain Problem

Find control u(t) so that

ogHz(t)szt T(hTh +[ul)dt
0 =0 <y° For all L, disturbances
F 2 41 And a prescribed gain y?

:Hd(t)szt j d )

0

Zero-Sum differential game
Nature as the opposing player



Two
Define 2-player zero-sum game as Antagonistic Inputs

V™ (x(0)) = min mg;le(x(O), u,d) =min max j(hT (x)h(x)+u' Ru—y?|d HZ) dt
u u
0
The game has a unique value (saddle-point solution) iff the Nash condition holds

min m(?xV(x(O),u,d) = m(?x minV (x(0),u,d)

Optimal Game Design Yields
Resilience
Robustness R
Guaranteed Performance ™ e
Disturbance Rejection T




Zero-sum Graphical Games
Cooperative and Adversarial Multi-agent Network
"\ Adversarial disturbance at each agent

Agents want to cooperate to synchronize to the control leader

- control node v




Cooperative H,, Synchronization

% = Ax, + Bu, + Dd. oader Xp = A%
System y. =Cx, Yo = CX,
S=(1®A)5+(1 ®B)u+(l ®D)d S=x—Ix,
y=(I®C)o
Performance output  |z(t)| =5'Q5 +u'Ru

o z®)Pdt [ (57QsS +u"Ru)dt
Bounded L, synchronization error !H | _{

Tud(t)uj dt Td(t)TTd(t)dt

2

<y

H-inf performance index J(o,u,d) = I(5TQ5+ u'Ru—»*d"Td)dt
0

Resilience to Network Disturbances



Cooperative H,, Synchronization Kristian Hengster-Movric

Theorem 2. Let the synchromzation error dynanucs with disturbances acting upon the agents
be given n global form as (29). Let the graph have a spanning tree with at least one non-zero
pinmng gamn connecting to a root node. Suppose there exist matrices F.F . symmetric and

positive definite. satisfying / Condition on graph topology
R =cR (L+G) (36) R (L+G) =P,
A'P+PA+Q, -PBR'B'R+y BPDD'P,+ M, R;'M, =0 (37

for some @, =0 >0, R =R >0, R, =R] >0, and the coupling gain, ¢>0. Define the output

feedback gain matrix, K, =K, as the one satisfying Condition for existence
] / of local OPFB
K.C=R (B'R+M,). (38)

T
then the control RZKZC =B Pz + Mz

u=—c(L+G)®K,CS (39).

1s the solution of the H_ static output distnbuted feedback problem. guaranteeing
boundedness of the I, gam (30) by y. defined by the matrices Q. R. T given as

R=R @R,
and either
. T=R®I=cR(L+G)®I with

Q=C;':L+ G}IE{LJFGJ @(Q, +Ar*[§+f§-"1+J’IP:-DHE}—E&[LJfG]E'fﬂi'ﬁ+@4+—“;ﬁm.ﬁ}}ﬂ (40) J. Gadewadikar, Frank L. Lewis, L. Xie,
V. Kucera and M. Abu-Khalaf,

o “Parameterization of all stabilizing H.,
if. I'=R @I with static state-feedback gains: Application
) i i - to output-feedback design,”
Q=c(L+G) R(L+G)® (0, +A'R,+BA)-cR(L+C)R(A' B +PRA)>0 (41) Automatica, vol. 43, no. 9, pp. 1597-

1604, September 2007



Communication Network Limits Available Information Exchange

Communication Network Tries to Destroy Optimality
Proper Controls Design Restores Optimality

Symmetry between OPFB and Graph Topology Information Restrictions

U; =cKCg¢; =cKe,; =cK ( 2= v) +0(Ye yi)] Network info flow restrictions

JENI

y; =Cx Local system measurement restrictions

e, =—((L+G)®C)s

\

Coarse global OPFB structure Fine Local OPFB structure

Condition on graph topology R1 (L+G)= P1

Same Same
Condition for existence T
of local OPFB R,K,C=BPF,+M,



2-player Zero-sum Nash Equilibrium

Command generator Xo = AXg,
Yo = CX,,
Agent Dynamics x = Ax. + Bu, + Dd.,
Y, =Cx;,

H-inf performance index  J(d,u,d) = _[(5TQ5+ u'Ru—y°d'Td)dt
0

Nash Equilibrium

Definition 3. Given a performance criterion. J(x,.u.d). the policies u .d" are n the Nash
equilibrium 1f
Jx(0Lu'.d) < J(x(0)Lu'.d )= J(x(0),u.d") .

Resilience to Network Disturbances



Cooperative and Adversarial Multi-agent Network
"\ Adversarial disturbance at each agent

Agents want to cooperate to synchronize to the control leader

- control node v

~ Resilient Optimal Design
~ For Adversarial Networks



Modeling and Control of Adversarial Networked T Ims

Zero-Sum Games " L S
Bipartite Synchronization on Antagonistic Com.wni ation
Multi-agent Pursuit-Evasion Games .

i




Structural Balance for Networked Multi-agent Systems

Continuous-time model of structural balance

Seth A. Marvel®, Jon Kleinberg®™', Robert D. Kleinberg®, and Steven H. Strogatz®

In almost all human endeavors There are TWO Opposing Teams
- WHY?

Sports
War
International conglomerates in macroeconomics

Social Psychology Dynamics of Friendship Groups
Can be understood in terms of TRIANGLES of relationships

Stable Groups Unstable Groups
AVASENYAYA
¥ _ - -
Stable groups have an odd number of friendship links
Structurally Balanced = Stability




Bipartite Synchronization on Antagonistic Communication Graphs
Structural Balance
Node Bipartition

Red edge weights are negative

Black edge weights
are positive

Two opposing
antagonistic groups

All triangles have an odd number of positive edges



Adjacency matrix

A= [aij]
N

d’ = Z;‘aij‘ Absolute Row sum
=

Absolute In-Degree Matrix

Signed graph Laplacian matrix

°=D°-A

D*® =

o O+ +»r O O

o rr O O O

N,

000
00 -1
000
0 00
0 00
-1 1 0]

~./



Bipartite Consensus
Agent Dynamics X =A% +Bu;, VieN
Leader Dynamics Xo = AX,

New Bipartite Distributed Control Law U ZCK[Z (a;X;—la; [ %) +(9:%—19, |Xi)]

jeN;

Opposing group goes to
Negative of the
Leader’s state

One group goes to
The leader’s state

X




Emergent Behaviors
Emergence of Two Antagonistic Teams

Time-Varying Edge Weights

Adjacency matrix Undirected graph

A:[aij] A = AT

Adaptive edge weights

dA ., da.
—=A or — 4 = d, a.
dt dt Zk: K=

Theorem
For almost any initial weights ~ A(0)

The network becomes structurally balanced
And splits into two antagonistic teams of almost the same size

S. A. Marvel, J. Kleinberg, R. D. Kleinberg, and S. H. Strogatz, “Continuous-time model of structural
balance,” Proceedings of the National Academy of Sciences, vol. 108, no. 5, pp. 1771-1776, 2011.
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Our revels now are ended. These our actors,
As | foretold you, were all spirits, and
Are melted into air, into thin air.

The cloud-capped towers, the gorgeous palaces,
The solemn temples, the great globe itself,

Yea, all which it inherit, shall dissolve,

And, like this insubstantial pageant faded,

Leave not a rack behind.

We are such stuff as dreams are made on,
and our little life is rounded with a sleep.

Prospero, in The Tempest,
act 4, sc. 1, 1. 152-6, Shakespeare

A fool thinks himself ©o Bc wise,
But & wisc man knows himscll to bc a fool
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